

LA-UR-18-28477

Approved for public release; distribution is unlimited.

Title: Flow Simulation Using Discrete Fracture Network Model

Author(s): Makedonska, Nataliia

Jafarov, Elchin Huang, Lianjie

Intended for: Presentation on EGS collab teleconference

Issued: 2018-09-05

Flow Simulation Using Discrete Fracture Network Model

Preliminary Results

August 28, 2018

dfnWorks

- dfnGen
 - Network Generation using **FRAM**
- dfnFlow
 - Flow simulation using **PFLOTRAN**
- dfnTrans
 - Lagrangian ParticleTracking

dfnWorks

Stochastic Fracture Generation

Each fracture is assigned:

- **Shape** *ellipse, circle, square, rectangles*
- Size
 Power Law Distribution
 Exponential Distribution
 Log Normal Distribution
 Constant
- Location random
- **Aperture**as function of fracture size
 as function of given transmissivity

Capability to apply internal heterogeneity of fracture aperture and transmissivity

λ – correlation lengthR – radius of circular fracture

High-Quality Computational Mesh

- Automated Delaunay triangulation is performed
- Mesh cells are fine near intersections and coarse far from intersections
- •The meshes for each of two intersecting fractures coincide along the intersection
- Control volumes at intersections are 3D objects constructed from the union of planar Voronoi cells.

Steady State Flow Solution / PFLOTRAN

Transmissivity profile [m²/s]

Pressure field [Pa] Fluid flows from top to bottom

pflotran.org

Particle Tracking

- Darcy velocities are reconstructed at each node of computational mesh
- Every intersection node represents four velocity vectors, explicitly representing direction of flow on fracture intersections
- Tracking particles in flow field through threedimensional fracture network

Mapping of DFN into a Continuum

Mapping of DFN into a Continuum

Flow simulations, PFLOTRAN

Discrete Fracture Network (DFN) Generation using synthetic data

- We model injection and production well, 10 m from each other, and circular hydraulic fracture (R=15m), which center coincides with injection well.
- The synthetic data was used to model natural sparse fracture network
- The stimulated hydraulic fracture is surrounded by a layer of small fractures (the layer width is 3 m, 1.5 m above and 1.5 m below hydraulic fracture) representing microfractures.
- PFLOTRAN multiphysics code is used to model flow and tracer movement from injection well to production through stimulated fracture and existing natural fractures.

Single fracture flow

Tracer is injected through injection well, distributes through the fracture homogeneously, and moves into production well.

DFN realization

Generated DFN is mapped into continuum mesh

Tracer Simulation

8/28/18 | 15 Los Alamos National Laboratory

Moving Forward

Generate DFN according to available fracture characteristics

Apply flow and transport input parameters, used in the experiments

Estimate natural fracture network connectivity

